

# **ML Problem Statement**



## **Predicting Pedestrian Safety Zones**

Urban safety depends on minimizing risks to pedestrians, especially in accident-prone zones. Your task is to design a Machine Learning model that predicts safety levels for different locations based on past data.

#### **BASE PROBLEM:**

Develop a Machine Learning model to predict pedestrian safety levels in urban environments by:

- Creating a regression model that generates a safety score (0-100) for specific locations at a certain time of the day.
- Utilizing features including geolocation, starting and ending time and severity of accident.

### **BONUS PROBLEM:**

- Implementing some feature engineering techniques.
- Creating a front-end for the model that communicate safety predictions effectively.

024///

### **CONSTRAINTS:**

- Use only the provided dataset
- Implement models using standard machine learning libraries, please do not use pure python with numpy (ptsd from last hackathon)
- Ensure code is well-documented and reproducible



## ML Problem Statement



#### **EVALUATION CRITERIA:**

- Prediction Accuracy (0-50 points): Evaluated using Mean Absolute Error (MAE) on a private test dataset
- Feature Importance (0-30 points): Assessment of feature engineering and safety predictor explanation in comments
- Code and Documentation (0-20 points): Code organization, clarity, and comprehensive documentation

#### SUBMISSION GUIDELINES:

- Complete Machine Learning model code as a colab or kaggle link. We are encouraging you to use these platforms
- Detailed in-line comments including: 
  • Model architecture and approach 
  • Feature engineering methodology 
  • Performance metrics 
  • Limitations and potential improvements
- Visualization of model predictions and insights such as performance metrics

#### Dataset link:

https://drive.google.com/file/d/1GT5JUQt1YlUCKkwk1LyS-lZo\_zIMJzNt/view

ZYRO'2025 Website Link: https://www.zyro-kgec.tech/